

CHEMRAZ® SUBFAB PROPERTIES

A Perfluoroelastomer designed specifically for SubFAB applications

FFKM INCREASES MANUFACTURING PRODUCTIVITY

Chemraz SubFAB, a perfluoroelastomer, is specifically designed to withstand the highly corrosive environments that are commonly seen in SubFAB applications. Specifically in the exhaust areas of the SubFAB including Pumps, Abatement systems, and piping fittings. Chemraz SubFAB addresses application challenges typically found in the SubFAB where temperatures and chemical exposures are high and increasing.

As device sizes have continued to shrink, the processes used to make the device features are evolving. Atomic layer processing and 3d device architectures are a few things driving changes in process chemistries and temperatures, as well as longer processing times. The more aggressive nature of these new processes also leads to more aggressive effluent gases that need to be handled in the SubFAB. These changes often challenge the conventional sealing materials used in the SubFAB to handle these process effluents.

Chemraz SubFAB is intended to upgrade systems using conventional sealing materials such as fluoroelastomers (and others) that can no longer handle the temperatures and/or chemical exposure found in the SubFAB applications. Chemraz SubFAB is also intended to lower the overall Cost of Ownership of the SubFAB by matching performance with application.

FEATURES AND BENEFITS

- Broad chemical resistance to typical Subfab effluents, including Fluorine and Oxygen
- 300°C Operating temperature capability
- Low cost of ownership, whether upgrading from FKM or looking to lower costs.
- Patent PENDING, Optimal-High Temperature- seal design accounts for the limitations of the KF fittings that can lead to elevated stress in the seal materials and premature failures.
- Optimized physical properties for long life in static vacuum fittings.
- Color to distinguish it from typical perfluoroelastomers & fluorocarbon elastomers.

APPLICATIONS

- ISO-KF vacuum fittings. Including typical sizes:
 - KF10, KF16, KF25, KF40, KF50, IS063, IS080, IS0100, IS0160, IS0200, and IS0250
- Interconnecting vacuum piping in the SubFAB
- Rough Pumps
- Gas Abatement systems/Scrubbers
- SubFAB valves

Note: Due to the nature of the material, slight variations in this color may exist in Chemraz SubFAB. There may also be the possibility for darker or lighter areas to be present on the parts. These natural variations should be considered cosmetic, and will not affect the performance of the parts.

Statements and recommendations in this publication are based on our experience and knowledge of typical applications of this product and shall not constitute a guarantee of performance nor modify or alter our standard warranty applicable to such products.

Prior to actual use it is recommended compatibility tests be run to determine suitability in a specific application. This is critical where failure could result in injury or damage. A regular program of inspection and replacement should be implemented. Greene, Tweed technical personnel are available to help with a recommendation. Contact Us Greene, Tweed Semiconductor

Kulpsville, PA, USA

Our Distributor Banner Industries

High Purity Flow Component Distribution USA & Asia Pacific Tel: +1.215.256.9521 Fax: +1.215.256.0189

Tel: +1.800.705.0016 Web: www.bannerindustries.com

1.

CHEMRAZ[®] SUBFAB PROPERTIES

A Perfluoroelastomer designed specifically for SubFAB applications

Compound No./Material Name:	Material Description:	Manufacturing Method:
CHEMRAZ [®] SUBFAB	GREY PERFUOROELASTOM	ER COMPRESSION MOLDED
DESCRIPTION	Chemraz [®] SUBFAB	TEST METHOD
PHYSICAL PROPERTIES		
Color	Grey	
Specific Gravity	2.3	D792
Hardness, Shore A	80	D2240
MECHANICAL PROPERTIES		
Tensile Strength @ Break **	1700 psi (11.7 Mpa)	D1414
Elongation **	190%	D1414
Modulus @ 50% Elongation **	460 psi (3.2 Mpa)	D1414
Modulus @ 100% Elongation **	870 psi (6.0 Mpa)	D1414
Compression Set, 70 hrs @ 200° C **	21%	D395
Compression Set, 70 hrs @ 300° C **	45%	D395
THERMAL PROPERTIES - COEFFICIENT	OF THERMAL EXPANSION	
21° C to 100° C	334.6 in/in/° C x 10 ⁻⁶	831-14
100° C to 200° C	350.4 in/in/° C x 10 ⁻⁶	831-14
200° C to 300° C	397.5 in/in/° C x 10 ⁻⁶	831-14
VACUUM PROPERTIES - HELIUM PERM	IABILITY	
21° C	9.00 x 10 ⁻¹² <u>cm³ · c</u> cm ² · s ·	— D1434-82
100° C	$1.39 \ge 10^{-11}$ $\frac{\text{cm}^3 \cdot \text{c}}{\text{cm}^2 \cdot \text{s} \cdot}$	
200° C	2.72 x 10 ⁻¹¹ <u>cm³•c</u> cm ² •s•	
ORGANIC OUTGASSING		
Total - 30 Minutes @ 100° C	0.2 ppmw	
Total - 30 Minutes @ 200° C	1.1 ppmw	

www.gtweed.com | www.bannerindustries.com

Total - 30 Minutes @ 300° C

2.

6.0 ppmw

CHEMRAZ® SUBFAB PROPERTIES

A Perfluoroelastomer designed specifically for SubFAB applications

Recommended for applications involving effluents from ETCH, Deposition, Diffusion, Ashing and other processes.

CHEMICAL COMPATIBILITY CHART

E= Excellent

G = Good

P= Poor

				_			_
CHEMICAL		SUBFAB	FKM		CHEMICAL	CHEMICAL	CHEMICAL SUBFAB
Ammonium Fluoride	NH ₄ F	E	G		Hydrogen Chloride	Hydrogen Chloride HCI	Hydrogen Chloride HCI G
Acetylene	C_2H_2	E	E		Hydrogen Fluoride	Hydrogen Fluoride HF	Hydrogen Fluoride HF E
Ammonia	NH ₃	E	Р		Hydrogen Selenide	Hydrogen Selenide H ₂ Se	Hydrogen Selenide H ₂ Se E
Argon	Ar	E	E		Hydrogen Sulfide	Hydrogen Sulfide H ₂ S	Hydrogen Sulfide H ₂ S G
Arsenic Chloride	AsCl	E	Р		Methyl Chloride	Methyl Chloride CH ₃ Cl	Methyl Chloride CH ₃ CI E
Arsenic Trichloride	AsCl ₃	E	Р		Monomethylamine	Monomethylamine CH ₅ N	Monomethylamine CH ₅ N G
Arsine	AsH ₃	E	F		Nitrogen	Nitrogen N ₂	Nitrogen N ₂ E
Boron Tribromide	BBr ₃	E	E		Nitrogen Trifluoride	Nitrogen Trifluoride NF ₃	Nitrogen Trifluoride NF ₃ E
Boron Trichloride	BCI3	E	E		Nitrous Oxide	Nitrous Oxide N ₂ O	Nitrous Oxide N ₂ O E
Boron Trifluoride	BF3	G	E		Oxygen	Oxygen O2	Oxygen O ₂ E
Bromine	Br	G	E		Ozone	Ozone O ₃	Ozone O ₃ E
Carbon Dioxide	C02	E	G		Perfluoro-propane	Perfluoro-propane C ₃ F ₈	Perfluoro-propane C ₃ F ₈ G
Carbon Tetrachloride	CCI4	G	E		Phosphine	Phosphine PH ₃	Phosphine PH ₃ E
Carbon Tetrafluoride	CF4	G	E		Phosphorous Trifluoride	Phosphorous Trifluoride PF ₃	Phosphorous Trifluoride PF ₃ E
Chlorine	CI ₂	G	E		Potassium Hydroxide	Potassium Hydroxide KOH	Potassium Hydroxide KOH F
Chloropenta	C ₂ F ₅ CI	G	E		Silane	Silane SiH ₄	Silane SiH ₄ E
Dichloro Difluoro	CCI ₂ F ₂	G	G		Silicon Tetrachloride	Silicon Tetrachloride SiCl ₄	Silicon Tetrachloride SiCl ₄ G
Dichloro Silane	SiH ₂ CI ₂	E	G		Silicon Tetrafluoride	Silicon Tetrafluoride SiF ₄	Silicon Tetrafluoride SiF ₄ G
Dimethylamine (DMA)	(CH ₃) ₂ NH	G	Р		Silicon Trifluoride	Silicon Trifluoride SiF ₃	Silicon Trifluoride SiF ₃ G
Disilane	Si ₂ H ₆	E	G		Sodium Hydroxide	Sodium Hydroxide NaOH	Sodium Hydroxide NaOH F
Difluoro Ethane	CH ₃ CHF ₂	G	Р		Sulfur Hexafluoride	Sulfur Hexafluoride SF ₆	Sulfur Hexafluoride SF ₆ G
Fluorine	F ₂	E	G		Tetraethylorthosilicate (TEOS)		
Fluoroform (F-23)	CHF ₃	E	Р		Tetrafluoromethane (F-14)	Tetrafluoromethane (F-14) CF ₄	Tetrafluoromethane (F-14) CF ₄ E
Germanium	GeH ₄	E	G		Trichloroethane	Trichloroethane C ₂ H ₃ Cl ₃	Trichloroethane C ₂ H ₃ Cl ₃ E
Helium	Не	E	E		Trichlorosilane	Trichlorosilane SIHCl ₃	Trichlorosilane SIHCl ₃ E
Hexachloro Disilane	Si ₂ Cl ₆	E	G		Trifluoromethane	-	
Hexafluoro Ethane	C ₂ F ₆	G	G		Trimethylamine	Trimethylamine (CH ₃) ₃ N	Trimethylamine (CH ₃) ₃ N G
Hydrogen	H ₂	E	E		Trisilane	Trisilane SI ₃ H ₆	Trisilane SI ₃ H ₆ E
Hydrogen Bromide	HBr	E	E		Tungsten Hexafluoride		